
 Page 1/7

A Component-based Framework for Space Domain Software
Applications

A. Thomas Vergnaud1, B. Mathieu Le Coroller2, C. Guillaume Véran2

1: Thales Communications, Palaiseau, France

2: Thales Alenia Space, Cannes, France

Abstract: This paper presents research carried on
by Thales on component based software
engineering for the space domain. We outline the
space domain context and give the general
architecture of MyCCM, our component framework.
We explain how we implemented a space-specific
component framework with MyCCM and what results
we got from experiments. Applying component
design to on-board space applications induces a
very light overhead while allowing automatic code
generation, as well as code reuse and application
redeployment. It thus helps cut development costs
and improve the reliability of software development.

Keywords: Component based software engineering,
real-time embedded systems, Lightweight CCM

1. Introduction

Component-based design approaches have initially
been created for information systems. They provide
more reuse capabilities and modularity than
traditional object oriented approaches [1].

Research has focused on applying the component
based approaches to real-time embedded (RTE)
systems. Such systems have specific constraints
regarding reliability, strict execution deadlines,
memory and computing power limitations, which are
not considered in information systems. Therefore,
component based software engineering (CBSE) has
to rely on tailored frameworks rather than on general
purpose ones. Thales has developed such a
framework, named MyCCM.

In this paper, we describe experiments made in
Thales to apply CBSE to the space domain: we
developed a use case named System Engineering
and Middleware based on standards for Space
domain (SEMS). This is a joint work between Thales
Communications, Thales Research & Technology
and Thales Alenia Space, driven in 2009 in the
scope of Thales innovation platforms.

We first describe the context of the space domain.
We then recapitulate general considerations on
component-based approaches and present the
MyCCM framework. The two sections after describe
some requirements from the space domain, and how

MyCCM fits them. We then present some results and
measurements to show the relevance of our
approach, and conclude by showing the connection
with research projects such as Artemis CHESS and
ITEA2 VERDE.

2. Need for Component-based Design in Space
Domain

The very nature of industrial programs in the space
domain has led to stringent requirements for
reliability and availability; hence implying high quality
insurance criteria. Some of them obviously trace to
the software product. In that context, Thales Alenia
Space targets the mastering of the design of its
embedded software at both interfaces and real-time
levels.

The model-based approach has been considered on
two facets:

Internals of applications: Model-Driven-Engineering
is used as a UML-based development environment
dedicated to the implementation of the various items
in the software-system.

Composition of applications: In order to build the
software-system, we selected a Component
Oriented Architecture.

Component-Oriented Architecture is indeed a key-to-
success in software development in the European
Space community. The particular constraints of
European programs in the space domain often lead
to outsourcing and co-contracting, somehow in
complex and multi-national consortiums when geo-
return comes into play.

Component-oriented techniques allow for mitigating
the risks at integration by emphasizing on the
interfaces and contracts of the components, and
handling the glue between the deployed instances.
In addition to these organizational concerns,
component-oriented techniques also favour the
decoupling of applications, hence promoting
reusability, and the definition of on-the-shelves
products.

We leveraged the outcomes of internal studies on
component-oriented architecture [2] when deploying
one on the on-board software of the Globalstar-2
constellation.

 Page 2/7

At that time, the architecture relied on the OMG IDL
textual notations, and generative techniques.
Though already expressing lots of benefits at the
interface-level, the methodology shown limits as it
lacked a deployment view for components, therefore
hampering the capability to drive automated
verifications on the overall embedded software
design. Besides, proprietary extensions to the
standard IDL had shown necessary so as to cope
with space-specific standards. Moreover, IDL only
covered the functional interfaces of our components,
letting the non-functional concerns being handled
elsewhere.

We needed an evolution of the component-oriented
techniques we used, as seen in the ASSERT project
[3], while still bringing into lines open and well-
spread standards and in particular the ones from the
OMG.

For space domain software architecture, the
homogeneity of interfaces is at stack; around twenty
percent of the code is devoted to communication
respecting space specific standards. The use of
standards so as to ease communications with
commercial and institutional partners, and the
capability to adapt them to the actual technical
needs are of utmost importance.

3. Overview of Lightweight CCM and MyCCM

In this section, we recapitulate the main principles of
component based software engineering (CBSE) and
present our component framework, MyCCM.

3.1 Component based software engineering

Components are pieces of functionality that are to be
assembled one with another in order to provide the
full functional coverage of the system. This allows
breaking down the whole system into smaller pieces,
truly independently manageable, easier to develop
and to reuse. Component-based approaches
typically rely on three concepts: component types,
component implementations and component
instances.

A component type describes the services the
component provides, as well as the ones it requires
from other components. In that sense, components
can be seen as an evolution for application design,
compared to classes of object-oriented languages:
classes only describe what services (methods) they
provide to other classes.

Provided or required services are described by ports;
ports are associated with component definitions.
Ports thus describe interaction points; they define
the types of exchanged data and the semantics of
these exchanges. Components are to communicate
one with another only through ports. Depending on
the component model, ports can implement complex

interaction semantics, or can represent very basic
interactions (e.g. operation call). In this later case,
the interaction semantics in itself is then deported to
what is called a connector. Connectors are used to
connect ports of components while providing
complex communication mechanisms.

Different component implementations can be
associated to a given component definition. A
component implementation represents the internals
of the corresponding component definition, the same
way a class implements an interface in object-
oriented languages. It thus holds the business code.

Component instances are the actual components to
be used in the architectures, just like objects
compared to classes. Ports of component instances
are to be connected one with another in order to
create a complete architecture. They can be
associated with tasks, mutexes, etc. in order to
control component entry points and the execution of
component business code.

Figure 3-1 summarizes the resulting organization of
a component-based application: business code is
encapsulated within components instances that
isolate them from the execution environment.
Components instances are controlled by containers
that manage communications and execution
resources. Containers rely on the runtime. Inter-
component communications can be local operation
calls between two containers, and use runtime
mechanisms (e.g. for remote communications). In
both cases, this is completely transparent for the
nested business code.

3.2 Lightweight CCM

CCM (CORBA Component Model) is an OMG
standard [4] that describes a component model.
Lightweight CCM is a standard subset of the CCM. It
is dedicated to providing a CCM compatible
component model suitable to the needs of distributed
embedded systems.

Lightweight CCM defines the notion of software
component as an envelope that wraps the user
business code, isolating it from the execution
environment. User code thus communicates with the
outside of the component only through the
component envelope. This envelope is usually

Figure 3-1: Implementation of a component-
based architecture

 Page 3/7

described using the IDL3 language. IDL3 defines two
communications ways offered to the user code:
interfaces and events. Interfaces are sets of
operations; they can be either provided by a
component (facets) or required by it (receptacles).
The same way, events are either sent by the
component (event sources) or received by it (event
sinks).

IDL3 constructions are transformed into sets of
programming interfaces that are to be implemented
either by the component framework (i.e. the
component envelope) or by the user code. This later
case corresponds to the services provided by the
component, described in its IDL3 declaration. This
set of programming interfaces is named CIF
(Component Implementation Framework).

CCM is originally defined as the CORBA 3 standard,
and thus typically relies on an ORB to manage
communications. However, this is not mandatory, as
the CCM purpose is to hide the ORB from the
business code, nested in components. Therefore,
one can use virtually any runtime to support the
execution of CCM architectures, provided that it can
manage the two communications paradigms
(operations and events).

Data types used in CCM are the CORBA ones: long,
short integers, floats, etc.

IDL3 itself does not address the description of
component deployment. The CCM is thus usually
associated with another OMG standard, D&C [5] that
covers the deployment and the configuration of
components. D&C is a very rich and complex
standard, mainly adapted to the deployment of
complex, dynamic information services. It lacks
several configuration elements required to deploy
real-time systems (e.g. thread priority definition).

3.3 MyCCM

MyCCM is a custom implementation of the
Lightweight CCM standard [6]. MyCCM stands for
“Make your CCM”; it is developed by Thales. It is
designed to address the specific needs of Thales
division in various domains (naval, robotics, space,
etc.) while providing a general, standard-based,
framework. It is not a single, monolithic piece of
software, but a collection of frameworks, tailored for
each situation.

The application design approach induced by MyCCM
implies a clear separation between functional code
(inside components) and infrastructure code (outside
components). The infrastructure code (task
management, local or remote communications
between components, etc.) is to be automatically
generated by MyCCM from the architecture
descriptions. The functional code is completely
isolated from the execution environment; it is
controlled by the component envelopes, managed by

the component framework. This allows reuse and
redeployment of components without altering their
implementation code. A consequence of this design
approach is that all control features (especially
tasks) must be declared at the component level and
associated with ports. Components are not
supposed to have internal tasks, as such tasks
would not be part of the architecture description, and
thus could not be managed by the code generator or
analysis tools.

It is important to note that the code generators of
MyCCM produce infrastructure code that would else
be written by hand. MyCCM actually automatically
cares of the technical part of the code; it leaves the
intelligent part (i.e. the business code) to the
designer.

The MyCCM framework relies on a set of internal
meta-models to represent architectures. We use the
CCM meta-model to represent data and component
types. The other information (e.g. component
implementations and instances, allocation on
physical nodes, task configuration, etc.) is stored in a
specific deployment meta-model. Our deployment
meta-model is greatly inspired by D&C [5], as well as
how allocation and configuration are represented in
standards like UML/MARTE [7] and AADL [8].
Having a non-quite-standard representation for
deployment and configuration help have flexibility
and adaptability in the framework while keeping
things simple to manage.

4. Requirements for the Space Domain

Space domain implies specific requirements
regarding the component framework capabilities. We
provide here a global overview of such
particularities.

4.1 General requirements

The technical context of space on-board software
applications is particular due to both technical and
programmatic constraints.

On the technical point of view, the on-board software
grew more and more complex in the decade
whereas the harsh physical environment have led to
rely on robust yet limited computing resources.
Typical figure is to run the software of the whole
spacecraft avionics on a single (yet redundant) 14
MIPS processor with 4Mo of RAM.

On the programmatic point of view, the space
industry uses specific standards for the handling of
communications between spacecrafts and ground
stations (CCSDS TC-TM). The European space
industry has also adopted standard defining common
interfaces spacecrafts shall provide for ground
operations [9].

 Page 4/7

These constraints imply difficulties in the use of
standard solutions for the capture of components,
and their implementation. For example, the
sometimes limited band-width allocated to satellite
communications makes it difficult to use GIOP.

In addition to these constraints, Thales Alenia Space
requires extensions to Lightweight CCM in its
component-based framework. These extensions
tackle specific viewpoints of the system to be
designed. The capture of these viewpoints on the
component model allows specializing the code
generation. This specialized code generation in-turn
allows handling domain-specific concerns directly on
the component envelope code.

4.2 Detailed Definition of types

The software component-model tends to be used as
an interface model for various users: software
architects, system engineers, control-law engineers.
The more the team focuses on physical concepts,
the more it uses engineering data.

In opposition to types defined with IDL, the
engineering data model requires the capability to
capture things like the legal range of values for that
type, and a unit (for example, radians). Obviously
these engineering types eventually map to IDL ones,
but the information in that data model is also a major
part of an interface specification.

In addition, as the available communication
bandwidth is somehow limited, a constrained
definition of types allows automating the
communication data to a minimum amount of bits.

The component-based framework therefore targets
Ada in order to natively benefit from the Ada strong-
typing features at the component level.

Of course, conversions towards the standard CCM
type are still possible; models and components
designed with the extensions being therefore
compatible with pure CCM models.

4.3 Real-Time Behaviour

The application complexity as well as the limited
computing resources makes it very difficult to meet
all deadlines when using only synchronous
communications. As a consequence, an
asynchronous operation invocation is sometimes
required.

Rather than the use of event-based communications,
the use of operations is sometimes favoured since it
allows capturing in the interface model the expected
response to a request. Nevertheless, selecting an
asynchronous message invocation for all inter-
component communications would neither be
effective.

Therefore, the component-based framework needs
to propose the capability to capture specialized non-

functional properties as the communication
semantics on a per-operation basis.

Besides on that non-functional topic, the component-
based framework shall respect the quality-
requirements on the Space software development.
They prohibit the use of dynamic memory allocation,
and limit the use of dynamic dispatching of
subprogram calls; hence the standard IDL mapping
for Ada cannot be directly applied since it widely
uses runtime polymorphism.

By the way, since the mastering of the real-time
design is also a requirement, the real-time
constructions that are used by the component
framework shall be amenable to verification, and in
particular static verification of the scheduling of the
application.

Fitting to the Ravenscar Computational Model from
the Ravenscar profile for Ada [10] is therefore
targeted, since it ensures that the design can be
analysed using static techniques such as RMA. The
use of a library of Ada generic packages developed
on top of Thales Alenia Space in-house real-time
operating system Ostrales (POSIX compliant) is a
start for restricting the code to legal constructions.

4.4 Use of PUS communications

In addition, as around twenty percent of the code is
devoted to ground-board communications, the
component-based framework shall handle ground-to-
board communications using PUS for the
identification of embedded services.

5. Implementation in MyCCM

We adapted the MyCCM framework to fit the exact
requirements of on-board space software.

5.1 Design of the framework

The MyCCM generators are coded in Java for the
Eclipse platform. They use the Eclipse Modeling
Framework (EMF) to represent and manipulate
models. The general architecture of the MyCCM
generators consists of four main parts, as described
on figure 5-1:

• the implementation of the MyCCM meta-
models in Java;

• a front-end;

• an applicative-side back-end;

• a runtime-side back-end.

The front-end translates concrete syntax into
MyCCM models. The EMF meta-models act as a
backbone for all MyCCM modules; front-end and
back-ends are connected to it.

 Page 5/7

Our architecture has two back-ends. The applicative-
side back-end generates the component envelope
code; it implements the application API (CIF) that is
provided to the business code. This API only
depends on the component type and data type
definitions; it is not affected by component
deployment, and thus remains stable from a
configuration to another.

The runtime-side back-end generates the adaptation
code that lies between component envelopes and
the low-level runtime itself. This code typically
manages tasks, communication mechanisms, etc. It
thus highly depends on the deployment information
and is supposed to change from a configuration to
another.

Having two separate back-ends allows the
generation of the applicative API for business code,
even if the eventual deployment is not defined. This
allows early component implementation.

5.2 Processing of architectures

The space domain brings very specific requirements
regarding the description of data types and
communication mechanisms. Therefore, we could
not rely only on the existing MyCCM meta-models to
manage space architectures. In addition, since these
particularities (PUS, etc.) are specific to space
domain, there is no point in adding these notions to
the code MyCCM meta-models. We thus developed
additional meta-models that extend the MyCCM
code meta-models.

As the input models carry specific information, we
chose to implement a graphical front-end. Graphical
syntax is usually more attractive for engineers to
learn, and more efficient to describe architectures.
Hence, though MyCCM internally uses a CCM meta-
model, we do not use IDL3 textual syntax.

We had to deal with very specific communication
models. As stated in section 4.3, on-board software
requires message passing and operation invocation,
both in synchronous and asynchronous manners.
Hopefully, the Lightweight CCM standard defines
event transmission and operation call. We extended
these notions by adding the necessary information in
the complementary meta-models, so that the
framework could differentiate these four
communication mechanisms at modeling level, and
thus handle them for code generation.

On the back-end side, the generated code relies on
the Ostrales runtime. Ostrales acts as an Ada
runtime, and provides basic mechanisms to manage
tasks (in the POSIX way), semaphores, etc.
Communications (including remote communications
with the ground station) are managed by a separate
library. Higher level mechanisms, such as protected
queues, are implemented by MyCCM on top of the
Ostrales primitives.

The MyCCM framework defines an intermediate
layer on which the generated code relies. This layer
provides an abstraction of communication and
execution mechanisms (task management, all the
kinds of communication available at design level,
etc.) and relies on the actual runtime kernel to
implement them. This way, the generated code is
somewhat independent from the exact capabilities of
the runtime kernel, which helps in case of the
replacement of the kernel by another runtime. In
addition, the intermediate layer constitutes stable
code. As a consequence, the code generated by
MyCCM is simpler in its design, and thus more
reliable.

6. Results

As results of the SEMS study, extensions to CCM
were designed to capture the constrained types,
specialized communication semantics, and PUS
identification of the on-board software entities.

We performed experiments on the generated code.
Typical figures have been extracted from the case
study of a prototype satellite. The software system
was a deployment of twenty instances of
components. In average, each component provided
half-a-dozen interfaces, and required as many. In the
case study, the average amount of operations in an
interface is five. Each component also exposes a
bunch of ten observable and/or configuration
attributes.

Figure 6-1 exposes a subset of a component of the
prototype.

Figure 5-1: General architecture of MyCCM

Figure 5-2: architecture of the application code

 Page 6/7

Board-to-board communications are fully statically
configured; inter-connections are hence known at
code generation time. This is particularly important
since it is a prerequisite for the direct execution of
most software static-analysis tool. This is a major
outcome of the study: before the use of the MyCCM
SEMS for deployment, connections were known only
after an initialization phase; that made usual static
analysis tools fail.

Concerning code size, the overhead induced by the
component-based approach and the automated
code generation is kept minimal; benches we drove
on the former component-architecture have indicated
that the volume of code generated by the new
component-based framework is similar to the one
formerly hand-written.

Since the code is generated, this implies major gains
on the development and validation efforts.

In addition, the overhead of the non-dispatching
solution for board-to-board inter-component
synchronous communications corresponds in the
worst cases to two subprogram calls. This overhead
is thus very light compared to the capabilities of
reuse and redeployment of components.

Moreover, as a qualitative attribute, the component
envelope code is fully independent from the
implementation code of the component, and from the
implementation of the required interfaces. Thus it
follows the separation promoted by the component-
based philosophy. The resulting applications
therefore comply with the need for reusability.

7. Conclusion

In this paper, we outlined constraints of the space
domain for on-board satellite software. We described
MyCCM, a framework developed by Thales that
supports component based software engineering
(CBSE), based on the Lightweight CCM standard
from OMG. We explained how we rely on CBSE to
improve application design and production.

Compared to traditional, program-centered
processes, CBSE allows a clearer design and thus
eases the reuse and the redeployment of software
elements. It implies a separation between business
and infrastructure codes. As it is well isolated, the
production of the infrastructure code can be
delegated to automatic code generators such as
MyCCM.

Our experiments showed that, though the
component-related code would be complex to write
by hand, its quality is greater than non component-
based ones, and it does not expose code overhead.
As this code is very technical, it can be efficiently
managed by code generators, thus reducing the total
application development costs.

Hence, CBSE brings very little overhead compared
with its benefits.

8. Perspectives

SEMS environment (modelling language, model
transformation engines and code generators)
currently only addresses the functional dimension of
components, but does not address their non-
functional characteristics (e.g. timing, input and
output accuracy, robustness). One investigated
evolution is to take into account such non-functional
requirements as soon as possible by mapping them
onto the architectural model. These requirements
would then be captured by the expression of extra-
functional properties attached to components and
finally preserved at run-time.

To achieve this, Thales Alenia Space and Thales
Communications are currently involved in an Artemis
project called CHESS that seeks industrial-quality
research solutions to the problem of property-
preserving component assembly in real-time and
dependable embedded systems. CHESS targets to
support the description, verification, and preservation
of non-functional properties of software components
at the abstract level of component design as well as
at the execution level. The results of CHESS are
expected to be integrated in SEMS framework at the
end of the project.

Another axis of investigation is to rely on the adopted
component model to enable early validation and
verification activities. By integrating major
technologies from Model-Driven Engineering,
Validation & Verification techniques and Component-
based execution platforms, it is expected to enable a
rapid prototyping of the system through a projection
and execution on the platform. This axis is mainly
investigated in the frame of ITEA2 VERDE project.

9. Acknowledgement

The authors would like to thank their colleagues who
participated to the design and the realization of the
study presented in this paper: Jérôme Chauvin, from
Thales Communications; Anupam Beri, from Thales
Research & Technology; Franco Bergomi, from
Thales Corporate Services; Florian Beaufay, Gérald
Garcia and Aurélien Vionnet, from Thales Alenia
Space.

Figure 6-1: Sample subset of a component

 Page 7/7

10. References

[1] W. Emmerich, N. Kaveh, "Component
technologies: Java beans, COM, CORBA, RMI,
EJB and the CORBA component model". 24th
International Conference on Software Engineering
(ICSE’02), 2002.

[2] C. Moreno, G. Garcia, "Plug & Play Architecture for
On-Board Software Components", DASIA 2003,
Prague, Czech Republic, 2003.

[3] M. Bordin, T. Vardanega, "A Domain-specific for
Reusable Object-Oriented High-Integrity
Components", 7th OOPSLA Workshop on Domain-
Specific Modeling, Montréal, Canada, 2007.

[4] OMG: "CORBA Component Model specifications
(version 4.0)" http://www.omg.org/spec/CCM/4.0/,
2006.

[5] OMG, "Deployment and Configuration of
Component-based Distributed Applications
Specification", OMG, 2006

[6] É. Borde, G. Haïk, V. Watine, L. Pautet: "Really
Hard Time Developing Hard Real Time", Workshop
Control Architecture of Robots 2007 (CAR'07),
2007.

[7] OMG: "UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems",
http://www.omg.org/spec/MARTE/1.0/, 2009.

[8] SAE: "Architecture Analysis & Design Language
(AADL) v2.0" (proposed draft). Technical report
AS5506A, SAE, 2009.

[9] ECSS, "Space Engineering - Ground Systems and
Operations - Telemetry and Telecommand Packet
Utilization Standard", ECSS, 2003.

[10] A. Burns, B. Dobbing, T. Vardanega, "Guide for the
use of the Ada Ravenscar Profile in high integrity
systems", University of York Technical Report,
2003.

11. Glossary

CBSE: Component-based Software Engineering

CCM: CORBA Component Model

CCSDS: Consultative Committee for Space Data Systems

D&C: Deployment and Configuration

ECSS: European Cooperation on Space Standardization

ESA: European Space Agency

IDL: Interface Description Language

OMG: Object Management Group

PUS: Packet Utilization Standard

RMA: Rate Monotonic Analysis

SEMS: System Engineering and Middleware based on
standards for Space domain

TC: Telecommand

TM: Telemetry

